Aerodynamic parameter identification method based on physics-informed radial basis function-deep neural networks

Jungu Chen, Junhui Liu*, Jiayuan Shan, Jianan Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

This paper investigates the perturbations estimation between the real and nominal aerodynamic parameters. To address this issue, this study proposes an aerodynamic parameter identification method based on the physics-informed radial basis function-deep neural network (PIRBF-DNN). PIRBF-DNN utilizes an integration-based loss function to achieve precise estimation of aerodynamic parameters perturbations and adopts a radial basis function-deep neural network (RBF-DNN) structure to enhance fitting capability of the network. The proposed identification method is validated through simulation in different scenarios and comparison with other aerodynamic parameters identification methods based on physics-informed neural networks (PINNs).

源语言英语
期刊ISA Transactions
DOI
出版状态已接受/待刊 - 2025
已对外发布

指纹

探究 'Aerodynamic parameter identification method based on physics-informed radial basis function-deep neural networks' 的科研主题。它们共同构成独一无二的指纹。

引用此