Artificial Intelligence-Based Approaches for AAV Vector Engineering

Fangzhi Tan*, Yue Dong, Jieyu Qi, Wenwu Yu*, Renjie Chai*

*此作品的通讯作者

科研成果: 期刊稿件文献综述同行评审

10 引用 (Scopus)

摘要

Adeno-associated virus (AAV) has emerged as a leading vector for gene therapy due to its broad host range, low pathogenicity, and ability to facilitate long-term gene expression. However, AAV vectors face limitations, including immunogenicity and insufficient targeting specificity. To enhance the efficacy of gene therapy, researchers have been modifying the AAV vector using various methods. Traditional experimental approaches for optimizing AAV vector are often time-consuming, resource-intensive, and difficult to replicate. The advancement of artificial intelligence (AI), particularly machine learning, offers significant potential to accelerate capsid optimization while reducing development time and manufacturing costs. This review compares traditional and AI-based methods of AAV vector engineering and highlights recent research in AAV engineering using AI algorithms.

源语言英语
文章编号2411062
期刊Advanced Science
12
9
DOI
出版状态已出版 - 6 3月 2025

指纹

探究 'Artificial Intelligence-Based Approaches for AAV Vector Engineering' 的科研主题。它们共同构成独一无二的指纹。

引用此